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Quasispin groups and their generalisations 

Cheng-tian Fengt and B R Judd 
Department of Physics, The Johns Hopkins University, Baltimore, Maryland 21218, USA 

Received 12 January 1982 

Abstract. The generators of the full quasispin group SO(8) and of its subgroup SO(7) are 
constructed from coupled products of annihilation and creation operators for nucleons. 
The mutually commuting generators for each of these groups are used to identify the 
irreducible representations occurring in the nuclear I shell for which I G 3. The embedding 
of SO(8) x S0(21+ 1) in S0(161+8) is examined, and the apparent confluence of spinor 
and non-spinor representations when 1=0 is shown to correspond to the well known 
automorphism for D4. A quasispin group complementary to G2 is sought in the nuclear 
f shell without success. The extension of isospin and spin to an additional spin space leads 
to the introduction of a unitary symplectic group USp(8) within the new quasispin scheme. 

1. Introduction 

In the shell theory of electrons or nucleons, it is highly convenient to treat the spin 
and isospin spaces separately from the orbital space, the limitations on the acceptable 
states in each of these spaces being determined by applying the Pauli exclusion principle 
to the combined space. The mathematical way to study the properties of one particular 
space apart from those of the others is to construct operators from the basic creation 
and annihilation operators that are scalar in all the spaces except the one in hand. 
For example, if the tensors ut  and a create and annihilate the 4(21+ 1) states of an 
I nucleon, then we can form several coupled products that preserve the number N of 
nucleons and that are all scalar in the orbital space. Ordering the ranks in the sequence 
isospin, spin, and orbit, three of these coupled products can be written 

( @ t 4 ( 1 0 0 ) ,  (a  lo). (1) 
The operators (1) close under commutation and form the generators of the supermulti- 
plet group SU(4) of Wigner (1937). Their application to any state of the nuclear I 
shell leaves the orbital quantum numbers L and ML untouched, but allows us to reach 
all the various spin and isospin states belonging to an irreducible representation of 
SU(4). The inclusion of the total scalar in (1) would have led to U(4) rather 
than SU(4). 

It was realised by Flowers and Szpikowski (1964a, b, 1965) that the collection (1) 
could be enlarged by including 13 new orbital scalars. Their concise tensorial forms 
are 
( @ a )  9 (aa ) ( l  0°), (aa)'O'O', t t ( 0 1 0 )  

( a a )  9 

t t ( 1 0 0 )  

(a ta) 'OOO'+ ( u u t ) ( O O o ) *  (2) 
t Permanent address: Department of Physics, Shanghai Teachers College, 10 Kweilin Road, Shanghai, 
China. 
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The combined set (1) and (2) closes under commutation and forms the 28 generators 
of the full quasispin group SO(8). The number N is no longer preserved, and the 
representations of SO(8) extend across the shell. 

The situation for electrons is qualitatively different. The operators at and a are 
double tensors, rather than triple tensors, since the isospin space is no longer present. 
Coupled products can be formed as before: however we can now use the scalars 
(a  ' a  ' ) ( O 0 )  and ( U U ) ( ~ ~ ) ,  in conjunction with to form the three 
components (with suitable prefacing coefficients ) Q,, Q- and Q, of the quasispin Q. 
The analogous construction for nuclear states does not work because 

( a t a t ) ' O O O '  = (,,)~000~ = 0, 

This result can be readily proved either by explicitly expanding the coupled products 
or by simply noting that there is no "S term in the nuclear configuration 12. 

It is the purpose of this article to put these and some allied results in a broad 
group-theoretical context and to generalise them to hypothetical particles with addi- 
tional spin spaces. 

2. Root figures 

Although the full quasispin group SO(8) has been known for almost two decades, 
there has been very little work on the identification and decomposition of the corres- 
ponding irreducible representations that occur in a given nuclear shell. The first step 
in this direction is to put the generators (1) plus (2) into the standard Cartan-Weyl 
form. As an aid to doing this we enlarge the collections (1) and (2) to include all 
operators of the form 

a :a :, a&?, a :a, (5 # 17) (3) 

where 5 and 7 stand for the triads of quantum numbers of the type (m, m,, ml). In 
the atomic case, the isospin space is absent and the operators (3) and (4) form the 
generators of S0(81+4) (Judd 1968). The corresponding group for nucleons is 
S0(161+8),  and the states of I N  with even N and odd N span the irreducible 
representations (51 .  . . 5) and ( 5 5 .  . . 5 - ~ )  respectively. 

In order to construct the generators of SO@), we simply form all possible linear 
combinations of (3) and (4) that are orbital scalars. We write 

1 1  1 1 1  1 1 

1 
H m , m s  = TC [a  tn,m,m,, a m,m,ml I 

mi 

for the four operators of type H that commute among themselves. If, now, we form 
the linear combinations 
H 1 - 2 ( H ; ;  -1. +Hi-; -H-: ;  - H - ; - ; ) ,  H 2 - 2 ( H f i  -1 -HI-; - -H-;;  + H - ; - ; ) ,  

H 3-2 (H; ;  -1 -Hi-; +H-; i  -H- ; - ; ) ,  H 4 = i ( H : ;  +HI-; +H- t r  + H - ; - ; ) ,  ( 5 )  

we find that the roots ( ( Y ~ ( Y ~ ( Y ~ ( Y ~ )  appearing in the equation 

[Hi, Em 1 = aiEa (6) 
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are given by 
(i) (* lo  0 l), (O* 1 0 l), (0 O* 1 1) for the six operators of type E obtained by 

forming orbital scalars from a:a 1, ; 
(ii) (*l 0 0- l), (O* 1 0 -  l), (0 O f  1 - 1) for the six E operators obtained from 

a&, ; 
(iii) (*l f 1 0 0), ( f l  O* l o ) ,  (O* 1 f 1 0) for the twelve E operators obtained 

from ala, (with 6 # 7 ) .  
Thus the root figure corresponds to the 24 possible combinations *ei * ek of the 

four orthogonal unit vectors ei. We can immediately identify the Cartan algebra as 
D4 and the corresponding group as SO(8). 

If, now, we discard a:u; and u p ,  from the generators of SO@), we are left with 
the number-preserving operators. However, the corresponding group is not semi- 
simple because H4 commutes with all of them. The removal of H4 leads to the 
suppression of the fourth entry a4 in the weights ( ( Y ~ c x ~ L Y ~ Q ~ ) .  We again get a collection 
of roots of the type *ejstek, but the weight space is now three-dimensional. The 
Cartan algebra is D3 and the corresponding group is SO(6). The isomorphism D3 = A3 
ensures the local isomorphism of SO(6) with the Wigner supermultiplet group SU(4). 

Different but essentially equivalent identifications of the generators of SO(8) and 
SO(6) in terms of infinitesimal rotation operators have been made by Flowers and 
Szpikowski (1964a, b), Pang (1969) and Evans eta1 (1981). 

3. The group SO(7) 

The relation SO(8) 3 SO(6) makes it attractive to consider the sequence SO(8) 2 
S0(7)2S0(6) .  However, the simple insertion of an orthogonal group in seven 
dimensions, which appears to have been first considered by Pang (1969), cannot 
automatically be made, since we do not know if the SO(6) group under study falls in 
the canonical sequence SO(n) 3 SO(n - 1) 3 SO(n - 2) . . . . For example, Racah 
(1949) uses SO(7) 3 SO(3) for the study of f electrons, but we obviously cannot insert 
SO(5) because the irreducible representation (100) of SO(7) yields an f state in S0(3) ,  
and there is no seven-dimensional irreducible representation of SO(5). 

It is therefore worthwhile to construct the generators of SO(7) explicitly to verify 
its insertion between SO(8) and SO(6). Since the corresponding root figure (namely B3) 
is three-dimensional, we can simply take the three commuting operators H I ,  H2 and 
H3 to serve as the H operators for SO(7). The E operators are not quite so easy to 
identify, but a knowledge that they must be linear combinations of a:.: and u p ,  
limits the options open to us. We find that, in addition to the operators for S0(6), 
we need to include the two vectors 

t t (100)- U = [(21 + 1) /2]”~  [cos 6 (a a ) sin e ( U U ) ( ~ ~ ~ ) ] ,  

v = [(21 + 1)/2]”* [cos 6 (atat)‘olo’+sin 8 ( U U ) ( ~ ~ ~ ) ] .  
(7) 

The eigenvalues (a1 a2 a3) of (H1 H2 H3)  for the components U,, V*, (f)’”( V, * U,) 
are ( * l o  O),  (0 0 *l), ( O h  1 0). Thus, to the vectors *ej  *ek we must add *ej ,  and 
this structure corresponds to B3. 

The appearance of the parameter 6 in equations (7) is rather surprising, since it 
means that there are an infinity of ways of specifying SO(7). The transformations (7) 
bear a resemblance to those of Bogoliubov (see, for example, Lane 1964), the 
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difference being that the creation and annihilation operators appear as coupled pairs 
rather than singly. The metric tensor gas  can be readily calculated, and we find that 
its determinant contains sin 26 as a factor. Thus, when 6 = n7r/2 (where n is a positive 
or negative integer, including zero), the determinant vanishes and the group is no 
longer semi-simple. This result can be verified directly from equations (7), since the 
vanishing of sin 28 corresponds to the presence of either a pair of creation operators 
and no annihilation counterpart, or vice versa. 

4. Irreducible representations 

The weights of various many-nucleon states can be found by working out the eigen- 
values of the operators Hi. Consider, for example, the configurations sN. In the case 
of SO(8) we see at once that, for so, 

(Hi, Hz, H3, H4)(0) = (o,o, 0, -1)lO). 

For the state of s1 for which m, = m, = 2, we obtain 1 

1 1 1  
(H1, HZ, H3, H4)al: lo> = (2, z, 5,-$)& lo>. 

The other three states of s1 and the four states of s3 yield the weights (*;, *$, *$, *$) 
with an odd number of minus signs. Continuing, we find 

(Hi, H ~ , H ~ , H ~ ) u ~ : u I - : ~ O ) = ( ~ ,  ~ , O , O ) U I ; U F - ; ~ O ) ,  

while the remaining five states of s2 yield (-1, 0, 0, 0), (0, *l, 0,O) and (0, 0, *l, 0). 
Specifying an irreducible representation of SO(8) by its highest weight, we see that 
the states of so, s2 and s4 belong to the eight-dimensional irreducible representation 
(1000) of SO@), while the states of s and s3 belong to the different eight-dimensional 
irreducible representation ti$$- $) of SO(8). From the Weyl (or kaleidoscope) group 
for Dq, we see that all the listed weights are necessary to complete the structure of 
an irreducible representation, and there are no weights left over. 

Since we have already determined the H operators of SO(7) and S0(6),  we can 
easily determine the branching rules for the irreducible representations of low 
dimensionality occurring in SO(8) 3 SO(7) 3 SO(6) simply by deleting the eigenvalues 
of H4 from the sequences above. The results are 

(1000) + (loo)’+ (000)’ + [( 100) + (OOO)] + [(OOO)], 
($ $ 5  - 4) + ($$ 3)) + (ti$) + ($1 - 3,. 

Primes are attached to the irreducible representations of SO(7) to distinguish them 
from those of SO(6). Explicit expressions for the dimensions of the irreducible 
representations enable various dimension checks to be made. For example, the 
dimension of (wl  w2w3w4) of SO(8) is given by 

D ( W i W 2 W 3 W 4 )  = ( W 1 -  W 2 +  l ) ( W l -  W 3  + 2 ) ( W 1 -  W 4 +  3 ) ( W 2 -  W 3  1) 
x (w2 - w4 +2)(w3 - w4 + l ) ( W l +  w* + 5 ) ( w l +  w1+4)  

X ( W l +  W 4 + 3 ) ( W z +  W 3 + 3 ) ( W 2 +  W q + 2 ) ( W 3 +  W4+1)/4320. 

Corresponding expressions for D ( w l w 2 ~ 3 )  for SO(7) and SO(6) are given elsewhere 
(Judd 1963). 
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5. The nuclear 1 shell 

Since the generators of SO(8) are scalar in orbital space, they necessarily commute 
with In fact, they commute with all ( U ~ U ) ' ~ ' ~ )  for which k is odd, as can 
be verified by an explicit calculation. The operators ( U ~ U ) ' ~ ~ ~ )  with odd k form the 
generators of S0(2I+ l), so we can write 

S0(16l+ 8) 3 SO(8) x S0(2I+ 1). (9)  

For the s nucleons of 9 4, all orbital states are S states and S0(21+ 1) carries no new 
information. For p nucleons, on the other hand, S0(2I+ 1) = S0(3),  and each irreduc- 
ible representation of SO(8) is associated with an angular-momentum quantum number 
L. The precise connection can be worked out by picking states of pN with ML=L 
and finding the eigenvalues of the Hi. The results are set out in table 1. The 

Table 1. Branching rules for the states of the nuclear p shell. 

Groups and representationsa Dimensions 
SO(8) x SO(3) sO(8)  x SO(3) 
( w 1  W Z W 3 W 4 ) L  ( W l W Z W 3 W 4 ) L  D ( W 1 W Z W 3 W 4 ) X  (2L+ 1) 

(3000)s (g$g-g)s 
(511 1 (211-1)P 2 2 2 - 2 ) P  
(111 1 (2100)D 2 2 2  -2)D 

(1 110)F (511i)F 
(1000)G (~-iz-z)G 1 1 1  1 

112x1 
224 x 3 
160x5 

5 6 x 7  
8 x 9  

a The collection of representations (wl w2w3w4)L in the first and second columns belong 
to the respective irreducible representations (it. . . i) and (it. . . 1-i) of SO(24). In 
tables 2 and 3, the corresponding groups are SO(32) and SO(40). 

generalisation to d and f nucleons is straightforward, and the results are given in tables 
2 and 3. The two irreducible representations (/$. . . ik.3) of S0(161+8) correspond 
to configurations with even N (upper sign) and odd N (lower sign). The sum of the 
listed dimensions for a given I is in each case 28'+4. This is precisely the number of 
states in the nuclear I shell. 

6. Automorphisms of SO@) 

In the case of s nucleons, the group S0(16I+ 8) becomes SO(8) itself. It is here that 
we face an unusual situation. The two representations ($$$*$) of S0(161+8) for 
even N and odd N do not coincide with (1000) and (fit-$) appearing in (8). The 
origin of the discrepancy lies in the transformation ( 5 ) ;  for, although the eigenvalues 
of are always half-integral, those of the Hi can be integral. It is not difficult to 
see that the eight weights of (1000) and the eight weights of either (i$i$) or ($$$-$) 
are similarly situated with respect to the 24 roots *ek * e j  of D4: all weights are unit 
distance from the origin and the combined array of roots and the vectors leading from 
the origin to the eight weights of a representation differ only in their orientation. This 
is related to the well known automorphism for D4 (see Wybourne 1974), and leads 
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Table 2. Branching rules for the states of the nuclear d shell. 

~ 

Groups and representations Dimensions 
SO(8) x SO(5) 

(w1wzw3w4) x cw; w ; ,  
SO(8) x SO(5) 

(w1 w2w3w4) x cw; wi) D(w1w2w3w4) x D ( w ; w ; )  

(5000) x (00) (322-5) x (00) 672 X 1 
(322-2)x (10) (;f;-f)x(lo) 1680x5 

(411 - 1) X (11) ( f$$ - t )  x (11) 2400 x 10 
(4100) x (20) (22$-$, x (20) 1568 x 14 

(321 - 1) x (21) (ftf - 4) x (21) 2800 x 35 
(3200) X (22) (ff;-;)x(22) 1400 x 35 

(222-1)X(30) (ffi)) x (30) 672 x 30 
(31 10) x (31) (gt$-f)x(31) 1296 x 81 

(2210) x (32) &ff) x (32) 840 x 105 

(2111)X(33) (ffft) x (33) 224 x 84 

(3000) x (40) ($$t-$)x (40) 112x55 

(211-1)X(41) (tii-f) x (41) 224 x 154 

(2100) x (42) (331 2 ~ 2 - ~ ) x ( 4 2 )  1 160 x 220 

(1 110) X (43) (tftf) x (43) 56x231 
(1000) x (44) (iff-4) x (44) 8 x 165 

to distinct irreducible representations of SO(8) often sharing a common dimensionality. 
Many examples of this appear in tables 1-3. We can regard the equations ( 5 )  as 
representing a rotation in the four-dimensional weight space in which the star of roots 
*ei * ek goes into itself while the three elementary representations of dimension 8 
transform among themselves according to 

($23) + (lOOO), 2 2 2 - 2 )  + (2 1 1 1  5 2 - z), (1000) + (3%). 

7. Branching rules 

It is straightforward to generalise the reductions (8) .  The branching rules S0(8 )+  
SO(7)  and SO(7) + SO(6) are set out in tables 4 and 5 for the nuclear p shell. The 
weights of the irreducible representations of SO(6) can be interpreted as the weights 
of the irreducible representations of SU(4), since D3 =A3. The commuting generators 
of U(4) are 

H k , m s  = C a k,m,mra m,m,m, 
mt 

so we can relate them to the commuting generators H I ,  Hz and H3 of SO(6) by using 
( 5 )  together with the equation H4 = $N - 21 - 1. The results are 

Hi ; = $(Hl+ H2 + H3) +&, 
H’; & = $( 

HI - f  = ;(HI- H2 - H3) + iN, 

-H2 + H3) + &v, -; = $( -HI+ H2 -H3) + &. 
Since the eigenvalues of (H1, H2, H3)  are ( w l ,  w2,  w 3 ) ,  we can find a characteristic set 
of eigenvalues for the to within the additive constant $N. A permutation of 
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Table 3. Branching rules for the states of the nuclear f shell. 

Groups and representations Dimensions 
SO(8) X SO(7) SO(8) x SO(7) 

( w 1  w 2 w 3 w 4 )  x ( w ;  w ; w ; )  (w1 w 2 w 3 w 4 )  x ( w ; w ; w ; )  D(Wl W 2 W 3 W 4 )  x D ( w ;  w ; w ; ,  

(7000) x (000) 
(433 -3) x (100) 
(611 - l ) x  (110) 
(522-2) x (111) 

(6100) x (200) 
(432-2)x(210) 
(521-1)x(211) 

(5200) x (220) 

(4300) x (222) 

(5110)x(310) 

(431 - 1) x (221) 

(333 -2 )~ (300)  

(422 - 1) x (311) 
(332 - 1) x (320) 

(4210)x(321) 
(3310)x(322) 
(4111)x(330) 
(3220) x (331) 
(3211)x(332) 
(2221) x (333) 
(5000) x (400) 

(322-2)x(410) 
(411 - l)X(411) 

(4100) x (420) 

(3200) x (422) 

(3110)x(431) 
(2210) X (432) 
(2111)x(433) 
(3000) x (440) 

(211 - 1) x (441) 
(2100) x (442) 
(1 110) x (443) 
(1000) x (444) 

(321 - 1) X (421) 

(222 - 1) x (430) 

2 6 4 0 x 1  
7 3 9 2 x 7  

12 320 x 21 
15400x35 
7 776 x 27 

16 800 x 105 
22 680 x 189 
10 752 x 168 
18 144 X 378 
7 840 x 294 
3 696 x 77 
8 800 x 330 

12320x616 
7 392 x 693 

12 936 x 1617 
6 160 x 1386 
2 400 x 825 
4 536 x 2079 
2 800x2310 

672 x 1386 
672 x 182 

1 680 X 819 
2 400 x 1560 
1 568 x 1911 
2 800 X4550 
1 400 x 4095 

672 x 3003 
1 296 x 7722 

840 x 9009 
224 X 6006 
112x3003 
224 x 8008 
160 x 10296 
56 x 9009 

8x4719 

these numbers is enough to determine the highest weight and hence the corresponding 
tableau [ A ]  of U(4). The results are displayed in table6 for those representations 
occurring in the nuclear p shell. The tableaux separated by commas in this table 
correspond to the various choices of N open to us and become equivalent when U(4) 
is limited to its subgroup SU(4). 
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Table 4. Branching rules for SO(8) + SO(7). 

( L L L * 1  
2 2 2  2 )  

( 3 1 l * l  
2 2 2  2) 

($$). 4) 
(323.3 
2 2 2  2 )  

( 5 l 1 , l  
2 2 2  2 )  

(1000) 
(1110) 
(2100) 

(111 1 
2 2 2 )  ($fi)'(ffi)' 
(f$&3t$)' 
(23f)' 
(ffi)'(ff;)'($&y 
(100)'(000)' 
(1 11)'(110)' 
(210)'(200)'(110)'(100)' 

(211*1) (21 1)'( 11 1)' 
(3000) (300)'(200)'(100)'(000)' 

Table 5. Branching rules for SO(7) + SO(6). 

1 1 1  11 1 8 (;U&)' ( I I ~ ) ( T  1-2) 
(311 3 1  1 1 1 1  1 1  
2 z z ) ( Z I  - T ) ( I j j ) ( I I -  B 
2 2 2 ) ( I I  - I ) ( T Z d ( I I  - I) 
2 2 2 ) ( 1 j - 2 ) ( 2 ~ ~ ) ( 2 2 - 5 )  

(21 I N T I  - z ) ( z j I ) ( z z  - ~)(iii)(ii - B 

(311 48 2 2 2)' 
(331 1 112 2 2 2 )  
(333 112 222) '  

168 ( f &  

(321 3 3  1 3 1 1  3 1  1 

(332 3 3  3 1 3 1  12 1 

5 1 1  5 1  1 3 1 1  3 1  1 1 1 1  1 1  

1 (000)' (000) 
7 (100)' (100)(000) 

21 (110)' (110)(100) 
35 (111)' (111)(11- 1)(110) 
27 (200Y (200)(100)(000) 

105 (210)' (210)(200)(110)(100) 
189 (211)' (211)(21-1)(210)(111)(11- 1)(110) 
77 (300)' (300)(200)(100)(000) 

It is straightforward to confirm that tables 1, 4, 5 and 6 are consistent with the 
classification of the nuclear p shell provided by Elliott and Lane (1957). For example, 
the D states occurring in pN (with even N) belong to (2100) of SO@), which decom- 
poses, via representations of S0(7), to the direct sum 

2(000) + 4( 100) + 2( 1 10) + 2(200) + (2 10) 

of representations of SO(6). From table 6, this sequence is equivalent to 

2[0]+4[11]+2[211]+2[22]+[321]. (10) 

Allowing for the single occurrence of [321] in the half-filled p shell, and for the 
equivalences set out in table 6, the tableaux in the sequence (10) above are just the 
adjoints of the orbital tableaux listed for the D states in table 18 of Elliott and Lane 
(1957). We should point out here that many of the decompositions represented by 
tables 1-6 are known to Dr J A Evans. 
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Table 6. Correspondence between irreducible representations of SO(6) and U(4). 

4 
4 

20 
20 
36 
36 
20 
20 
60 
60 
1 
6 

15 
10 
10 
20 
64 
45 
45 
50 

Ell, [21111, E32221 
[ l l l ] ,  [2221], [33321 

E32111 
[221], E33211 
13111 
E3221 

[3331 
[321 
[3311 
[O], [ l l l l ] ,  [2222], [3333] 
[ll], [2211], [3322] 
[211], [3221] 
121, [31111 
[222], [3331] 
W I ,  E33111 
13211 
[311 
13321 
[331 

131 

The spin-isotopic spin structure of the irreducible representations of SO(6) can be 
found by working out the decompositions corresponding to SO(6) -* SO(3) x SO(3). 
Many equivalent decompositions have been tabulated by Jahn (1950) and Flowers 
(1952). The representations of SO(6) are specified in their articles by the equivalent 
representations of U(4), and those of SO(3) x SO(3) by the quantum-number pairs 
(TS). 

8. Complementary groups 

The 160 D states occurring in p2, p4, . . . , p" can be regarded as basis functions for 
the representation (2100) of SO(8). The properties of the D states can thus be tied 
to the properties of the group SO(8). This connection parallels the use of seniority 
in atomic physics, where matrix elements of operators in different configurations can 
be related by making use of their tensorial ranks with respect to the quasispin Q. A 
similar transference is possible in the nuclear case, though the properties of SO(8) 
are not as well known or as easily come by as those of SO(3). Moshinsky and Quesne 
(1969,1970) have called such groups complementary to stress the role that they can 
play. For example, the reduced matrix elements of an orbital vector operator within 
the states of pN with a given L become proportional to certain Clebsch-Gordan 
coefficients for the group SO(8). Of course, if such coefficients vanish, so do the 
corresponding matrix elements; but it is rare that new selection rules can be obtained 
in this way. The richness of the classification scheme becomes more striking for 
particles for which 1 > 1. For d and f nucleons the orbital group SO(3) of table 1 is 
replaced by SO(5) and SO(7) respectively. As can be seen from tables 2 and 3, new 
irreducible representations of SO(8) appear. 
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For many years it has seemed as if it should be possible to find a group complemen- 
tary to the group GZ that Racah (1949) introduced for f electrons. The additional 
selection rules that such a group would provide might go some way towards accounting 
for many of the unexpected simplifications that GZ is associated with (see Judd 1971). 
Moreover, an obvious starting point in constructing the generators of the complemen- 
tary group is the collection of triple products of the type (a a a ) , (utaa)"*', etc. 
All such orbital scalars turn out to be also scalar with respect to Gz. Unfortunately 
we have not succeeded in picking a reasonably small subset of them that closes under 
commutation. 

Table 3 is useful for studying whether the nuclear f shell is more propitious. From 
the branching rules for SO(7) + G2 given by Wybourne (1970), we quickly find that 
the number of occurrences of the irreducible representations (go), (71), (70), (62), . . . 
of Gz in the nuclear f shell are 16, 112, 576, 320,.  . . . If a group C complementary 
to G2 exists, these numbers (or their halves, if a separation according to even or odd 
N occurs) should match the dimensions of representations of C. The trivial solution 

t t t (9) 

C' = SU( 16) x SU( 112) x SU(576) x . . . 
is of no interest to us, since it adds nothing to our knowledge of the structure of the 
shell. Instead, we seek a group C for which C' 3 C 3 SO(8). It is easy to check that 
the numbers 16, 112, 576, 320,.  . . (or their halves) cannot be the dimensions of 
irreducible representations of a single group C; and without the crucial feature of 
irreducibility much of the attraction of the analysis evaporates. The splitting of the 
shell into parts for which N = p  (mod 3), where p = 0, 1, and 2, can be studied with 
the aid of table 3 above and table 6 of Flowers (1952). It again turns out that the 
occurrences of irreducible representations of G2 do not correspond to the dimensions 
of the irreducible representations of a group C. Thus the obvious avenues leading to 
a group complementary to Gz do not appear to be productive. 

9. Generalised isospin 

For nucleons, a t  and a are triple tensors. If we generalise s and t by including a 
third spin r, also equal to 2, then a t  and a become quadruple tensors. The coupled 
products (a a ) and (aa)'oooo' are not identically zero, and we can construct a 
quasispin vector Q having components Q, and Q- proportional to these tensors, in 
analogy with the electron case. It is not difficult to see that this will always be possible 
when we are dealing with particles with an odd number of spin ranks of 2. The absence 
of a physical interpretation of r is no reason for not pursuing the implications of the 
third spin, since we can always project out the nuclear case by taking mr = +$. (In 
the same way we can recover the electron analysis from that of the nucleons by taking 
mr = +2.) 

The existence of Q means that we can regard at  and a as the two components 
(with mq = 2 and-;) of a quasispin tensor a'q"") for which q = f. To facilitate the 
discussion, we write 

(11) 
We begin by restricting ourselves to generalisations of the quasispin groups: thus we 
set k = 0. The four vectors 

9 (12) 

+ t (0000) 

1 

x ( K K 1 K 2 1 C 3 k )  = ( , ( W S l )  (qr?S l )  ( K K I K 2 K 3 k )  
a )  

x'ooloo~ x'ooolo' x(loooo), X'O looo', 
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are proportional to the angular momentum vectors Q, R, T and S. Since the com- 
ponents of u(qns’) satisfy anticommutation relations, the interchange of the two tensors 

(13) 

is even, and a numerical residue if K = K~ = K~ = K~ = k = 0. Thus X ( K K 1 K 2 K 3 k )  = 0 when 
the sum of the ranks is even and greater than zero. We can now see that the four tensors 

in (1 1) produces a sign change if a (qrrsl) 

2q -K + 2r-K1+ 2t - K 2 +  2s -K3+21- k 

x(O1OOO), X(ooloo’, X‘ooolo’, X‘olllo’, (14) 

together with the operators 
(10000) xo , (11100) xo 9 

110110) xo 3 
(11010) xo 7 

close under commutation and represent all possible coupled pairs of creation and 
annihilation operators that are scalar in orbital space and that preserve the number 
of particles. There are 64 components in all and they form the generators of U(8). 
If we omit XhlOOOO), we are left with the 63 generators of SU(8). This group is the 
generalisation of the Wigner supermultiplet group SU(4). If we permit components 
of K other than zero in the tensors (15) ,  the augmented collection comprises the 120 
generators of SO(16). This is the generalisation of the quasispin group SO(8). 

One new feature comes out of this analysis. From the generators of U(8) we can 
discard the operators (15) and retain just the 36 components (14). This subset closes 
under commutation and constitutes the generators of the unitary symplectic group 
USp(8). If we omit the tensor X , we can extend the sequence of groups and 
subgroups to 

(01 110) 

SO(16) 3 U(8) =I USp(8) 3 SO(3) x SO(3) x S0(3),  

where the three SO(3) groups on the right have as their generators R, T and S. 
It is not difficult to see that the existence of the SO(7) group in the sequence 

SO(8) 2 SO(7) 3 SU(4) does not generalise to SO( 16) 1) X 3 SU(8), since there is no 
way that additional roots can be added to the root diagram A, (corresponding to 
SU(8)) to give an acceptable root diagram that is itself contained in D8 (corresponding 
to SO(16)). The isomorphism A3 = D3 is a key element in allowing for the intervention 
of S0(7 ) ,  and this feature is not susceptible of generalisation. 

10. Concluding remarks 

Although our general approach in this paper has been somewhat formal, we are now 
in a position to turn our attention to problems of direct physical interest. For example, 
it would be interesting to follow up the remarks made in § 8 on complementary groups 
to see just how the Wigner-Eckart theorem for the full quasispin group SO(8) might 
be used to relate matrix elements of nuclear operators to one another. The projection 
technique briefly mentioned in § 9 is another attractive area for study. It is possible 
that vestigial features of groups such as USp(8) might be retained for nuclear or 
electronic configurations. If this turns out to be the case, we have a source for 
additional classificatory symbols and with them the possibility of providing explanations 
for some of the unexpected simplifications in the patterns of null matrix elements. 
We cannot yet afford to assume a complacent stance on such matters. 
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